Libros y Solucionarios Más Descargados
Inicio » Ingeniería » Fractales | Manuel Alfaro A., Manuel Murillo T., Alberto Soto A.

Fractales | Manuel Alfaro A., Manuel Murillo T., Alberto Soto A.

Fractales | Manuel Alfaro A., Manuel Murillo T., Alberto Soto A. Gratis en PDF

Fractales  Manuel Alfaro A., Manuel Murillo T., Alberto Soto A.

Fractales Manuel Alfaro A., Manuel Murillo T., Alberto Soto A.

Fractales | Manuel Alfaro A., Manuel Murillo T., Alberto Soto A. esta obra está dirigida, principalmente, a estudiantes de Matemática y de Computación, sin embargo, está dirigida también a todas aquellas personas que encuentran en las matemáticas el lenguaje universal con el cual se pueden explicar los fenómenos en nuestro entorno y, por supuesto, a todos los que ven en ella una puerta que los llevará hacia la búsqueda del conocimiento orientado al desarrollo científico y tecnológico.

Se pretende introducir, con un nivel intermedio, el tema de los fractales. Nos interesa rescatar su desarrollo matemático: topología, teoría de la medida y geometría, sin olvidar la parte visual y las hermosas imágenes generadas por computadora que tienen estos conjuntos.

Los fractales constituyen un tema matemático de actualidad y se han convertido en algo muy popular en los últimos años. Las figuras fractales se obtienen de repetir una y otra vez el mismo procedimiento, en forma recursiva o bien iterada, típicamente un fractal es algo irregular, pero lo más importante es que si lo ampliamos arbitrariamente, él aún sigue irregular.

Para nosotros, los fractales serán en general figuras geométricas que se caracterizan por su autosemejanza sin embargo existen otros, como la frontera del conjunto de Mandelbrot, que son fractales no autosemejantes. Son estructuras infinitas contenidas en una superficie finita y resultan de utilidad en el análisis de una gran diversidad de fenómenos como turbulencias, bolsa de valores, dispersión del humo, etc., además de sintetizar imágenes como montañas, nubes, costas rocosas, ríos y plantas entre otras.

En el Capítulo 1 se introducen los sistemas iterados de funciones y se muestran algunos ejemplos de sus atractores como el conjunto de Cantor, el triángulo de Sierpínski y el dragón de Heighway y se define la dimensión de semejanza. También formaliza propiedades de estos conjuntos y detalles importantes.

En el Capítulo 2 se representan números complejos usando bases complejas, se discute sobre “buenas” bases y “malas” bases. Se obtienen las figuras de conjuntos de fracciones de números representables en estas bases y se describen propiedades topológicas de ellos.

En el Capítulo 3 se define las dimensiones topológica y Hausdorff, cuando la dimensión topológicaes menor se define un fractal en el sentido original de Mandelbrot. Se trabaja con ejemplos de cómo calcular las dimensiones involucradas. Se exhiben otros tipos de dimensión fractal y se notan las similitudes que hay entre ellas.

En el Capítulo 4 se presentan algunas aplicaciones interesantes, como son la compresión de imágenes,los dilemas espaciales de evolución, así como el crecimiento fractal y el modelo D.L.A. En el Apéndice A se presentan algunos de los programas computacionales que se han utilizado para implementar los algoritmos dados y generar las figuras o gráficos que se presentan. Finalmente, la bibliografía es extensa y los libros, artículos así como los dominios en internet que se incluyen, le puede servir a los lectores para profundizar en los temas aquí tratados.

En el Capítulo 2 se representan números complejos usando bases complejas, se discute sobre “buenas”bases y “malas” bases. Se obtienen las figuras de conjuntos de fracciones de números representables en estas bases y se describen propiedades topológicas de ellos.

Tabla de Contenido

Prefacio iii

1 Autosemejanza 1
1.1 Sistemas iterados de funciones 1
1.2 Métrica Hausdorff 2
1.3 Atractores para sistemas iterados de funciones 5
1.4 Espacios de hileras 16
1.5 Grafos 19

2 Sistemas de numeración 26
2.1 Bases para números reales 26
2.2 Bases para números complejos 27
2.3 Representación de los enteros Gaussianos 28
2.4 Ejemplos de conjuntos de fracciones 30

3 Dimensión Hausdorff 33
3.1 Dimensión topológica 33
3.2 Generación de medidas 34
3.3 Medida Hausdorff 36
3.4 Dimensión de semejanza vs dimensión Hausdorff 39
3.5 Dimensión Hausdorff vs dimensión del grafo 42
3.6 Otras dimensiones fractales 47

4 Aplicaciones 50
4.1 Los dilemas espaciales de evolución 50
4.1.1 Dilema del Prisionero 51
4.1.2 La invasión de delatores: Un caleidoscopio evolutivo. 56
4.1.3 Un fractal dinámico 57
4.1.4 Conclusiones 59
4.2 Compresión de imágenes 60
4.2.1 Comprimiendo imágenes con IFS’s 61
4.2.2 Descomprimiendo imágenes con IFS’s. 62
4.2.3 Métodos de partición de imágenes 65
4.2.4 Conclusiones 66
4.3 Crecimiento Fractal y el modelo D.L.A. 67
4.3.1 Procesos de crecimiento fractal. 68
4.3.2 Simulaciones de algunos procesos de crecimiento. 70
4.3.3 Estimando la dimensión fractal. 72
4.3.4 Conclusiones 74

Apéndice A: Programas 75
A.1 Mathematica 75
A.2 Logo 79
A.3 DraTEX 81

Bibliografía 83

Indice Analítico 85

Sobre los autores 87

Título: Fractales
Autor/es: Manuel Alfaro A., Manuel Murillo T., Alberto Soto A.
Edición: 1ra Edición
Tipo: Libro
Idioma: Español
Formato: PDF

LINKS DE DESCARGA:
Comparte Nuestros Libros!
Facebook
Twitter
Google +
Youtube
Correo
Fractales | Manuel Alfaro A., Manuel Murillo T., Alberto Soto A. Gratis en PDF Fractales | Manuel Alfaro A., Manuel Murillo T., Alberto Soto A. esta obra está dirigida, principalmente, a estudiantes de Matemática y de Computación, sin embargo, está dirigida también a todas aquellas personas que encuentran en las matemáticas el lenguaje universal con el cual se pueden explicar los fenómenos en nuestro entorno y, por supuesto, a todos los que ven en ella una puerta que los llevará hacia la búsqueda del conocimiento orientado al…

Review Overview

0%

User Rating: Be the first one !
0

Deja un Comentario

Tu dirección de email no será publicada.